1228

SYNTHESIS AND REACTIONS OF NOVEL 1,3-DIPYRIDINYL-1,3--PROPANEDIONES*

Miloslav Ferles, Radek Liboska and Petr Trška
Department of Organic Chemistry, Prague Institute of Chemical Technology, 16628 Prague 6

Received June 29, 1989
Accepted September 19, 1989

Claisen condensation leading to new 1,3-dipyridinyl-1,3-propanediones Id-If is described. The series of 3,5 -dipyridinylpyrazoles $I I a-I I f$ was completed and N -phenyl derivatives $I I g-I I i$, as well as isoxazoles IIIa and IIIb, were prepared.

Many β-diketones represent valuable intermediates for the synthesis of heterocyclic compounds. This also applies to 1,3-dipyridinyl-1,3-propanediones of which only the "symmetric" compounds $I a-I c$ are known so far ${ }^{1-3}$.

In the present communication we describe the preparation and reactions of "unsymmetric" 1,3-dipyridinyl-1,3-propanediones, i.e. 1-(2-pyridinyl)-3-(3-pyridinyl)--1,3-propanedione (Id), 1-(2-pyridinyl)-3-(4-pyridinyl)-1,3-propanedione (Ie) and 1-(3-pyridinyl)-3-(4-pyridinyl)-1,3-propanedione (If). We obtained these β-diketones by Claisen condensation of acetylpyridines with ethyl pyridinecarboxylates in the presence of potassium tert-butoxide. In this manner we prepared the diketone Id from ethyl 2-pyridinecarboxylate and 3-acetylpyridine or from ethyl 3-pyridinecarboxylate and 2-acetylpyridine, the diketone Ie from ethyl 2-pyridinecarboxylate and 4-acetylpyridine and the diketone If from 3-acetylpyridine and ethyl 4-pyridinecarboxylate.

The prepared β-diketones are stable crystalline compounds which, according to ${ }^{1} H$ NMR spectra, are fully enolized.

We tried to prepare 3,5-dipyridinylpyrazoles and their 1-phenyl derivatives by condensation of β-diketones Id -If with hydrazine or phenylhydrazine. Pyrazoles $I I b$ (ref. ${ }^{4}$), IIIc (ref. ${ }^{3}$) and their 1-phenyl derivatives ${ }^{4}$ are already known. Also described is pyrazole IIe, obtained by reaction of hydrazine with 1-(2-pyridinyl)-3-(4--pyridinyl)-2-propen-1-one ${ }^{5}$. With the exception of unsuccessful condensation of phenylhydrazine with the diketone If, we obtained pyrazole derivatives IIa, IId, IIe, $I I g-I I I$. The structure of the derivatives IIh and IIi was determined on the basis

[^0]of 2D homocorrelated ${ }^{1} \mathrm{H}$ NMR spectra (COSY); the reaction gives that isomer in which the carbon atom bearing the 2-pyridinyl moiety is more distant from the phenyl-substituted pyrazole nitrogen. It seems that repulsion between the lone electron pair on the 2 -pyridyl nitrogen atom and the π-electrons of the benzene ring is decisive.

1
In formulae $/$ and $\|$:
$a, R^{\prime}=R^{2}=2-P y ; R^{3}=H$
b, $R^{\prime}=R^{2}=3-P y ; R^{3}=H$
c, $R^{1}=R^{2}=4-P y ; R^{3}=H$
$d, R^{1}=2-P y ; R^{2}=3-P y ; R^{3}=H$
e, $R^{1}=2-P y ; ~ R^{2}=4-P y ; R^{3}=H$
$f, R^{\prime}=3-P y_{i} R^{2}=4-P y_{i} R^{3}=H$
g, $R^{1}=R^{2}=2-P y, R^{3}=P h$
h, $R^{\prime}=2-P y ; R^{2}=3-P y ; ~ R^{3}=P h$
i, $R^{\prime}=2-P y ; R^{2}=4-P y ; R^{3}=P h$
Py = pyridinyl ; $\mathrm{Ph}=$ phenyl

/I

III $a, \mathrm{R}^{\prime}=\mathrm{R}^{2}=2-\mathrm{Py}$
IIIb, $R^{\prime}=R^{2}=3-P y$
IIIc, $\mathrm{R}^{\prime}=2-\mathrm{Py} ; \mathrm{R}^{2}=4-\mathrm{Py}$
IIId, $\mathrm{R}^{1}=4-\mathrm{Py}_{;} \mathrm{R}^{2}=2-\mathrm{Py}$

Finally, we tried to synthesize the hitherto undescribed 3,5-dipyridinylisoxazoles by condensation of diketones $I a-I f$ with hydroxylamine. We obtained only isoxazoles $I I I a$ and $I I I b$; the diketone $I e$ afforded a product which according to ${ }^{1} \mathrm{H}$ NMR spectrum was a mixture of isomeric isoxazoles IIIc and IIId and resisted to separation attempts. Reaction of diketones $I a-I c$ with hydroxylamine in boiling pyridine is reported ${ }^{6}$ to give the corresponding dioximes. As shown by TLC of the reaction mixtures, the dioximes were formed also in our experiments but we were able to isolate the isoxazoles III a and IIIb by repeated crystallization.

EXPERIMENTAL

Proton NMR spectra were measured on a Bruker AM 400 instrument ($400 \cdot 13 \mathrm{MHz}$) in deuteriochloroform with tetramethylsilane as internal standard. Chemical shifts are given in ppm (δ-scale), coupling constants J in Hz . Thin-layer chromatography was performed on Silufol UV 254 sheets (Kavalier, Czechoslovakia) in chloroform-methanol (5:1). Spots were detected with a Universal UV Lampe Camag (Mutenz, Switzerland) at 254 nm and 366 nm or with iodine vapours.

> 1-(2-Pyridinyl)-3-(3-pyridinyl)-1,3-propanedione (Id)

Potassium tert-butoxide $(1 \cdot 1 \mathrm{~g}, 10 \mathrm{mmol})$ was added to a stirred mixture of ethyl 2-pyridinecarboxylate $^{7}(1.5 \mathrm{~g}, 10 \mathrm{mmol})$ and 3 -acetylpyridine ${ }^{8}(1.3 \mathrm{~g}, 10 \mathrm{mmol})$. An exothermic reaction
commenced immediately. After cooling, the solid enolate was dissolved in water (20 ml) and the solution was decomposed with acetic acid (2 ml). The precipitated product ($2.1 \mathrm{~g}, 93 \%$) melted at $111-112{ }^{\circ} \mathrm{C}$ (water). Similarly was performed the condensation of 2-acetylpyridine ${ }^{9}$ with ethyl 3-pyridinecarboxylate which gave the same product in 26% yield. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$: $7 \cdot 38-7 \cdot 45 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-5, \mathrm{H}-5^{\prime}\right) ; 7 \cdot 58 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CH}) ; 7 \cdot 85 \mathrm{dt}, 1 \mathrm{H}\left(\mathrm{H}-4,{ }^{3} J(4,5\right.$ and 3$)=7 \cdot 7,{ }^{4} J(4,6)=$ $=1 \cdot 5) ; 8 \cdot 15 \mathrm{~d}, 1 \mathrm{H}\left(\mathrm{H}-3,{ }^{3} J(3,4)=7 \cdot 9\right) ; 8 \cdot 29 \mathrm{dd}, 1 \mathrm{H}\left(\mathrm{H}-4^{\prime},{ }^{3} J\left(4^{\prime}, 5^{\prime}\right)=7 \cdot 9 ;{ }^{4} J\left(4^{\prime}, 2^{\prime}\right.\right.$ and $\left.6^{\prime}\right)=$ $=1.7) ; 8.70-8.76 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-6, \mathrm{H}-6^{\prime}\right) ; 9.26 \mathrm{~d}, 1 \mathrm{H}\left(\mathrm{H}-2^{\prime},{ }^{4} \mathrm{~J}\left(2^{\prime}, 4^{\prime}\right.\right.$ and $\left.\left.6^{\prime}\right)=1.9\right) ; 9.45 \mathrm{~s}, 1 \mathrm{H}$ (OH , temperature dependent shift). For analysis see Table I.

Diketone Ie was prepared by condensation of ethyl 2-pyridinecarboxylate with 4-acetylpyridine ${ }^{10} .{ }^{1} \mathrm{H}$ N MR spectrum $\left(\mathrm{CDCl}_{3}\right): 7.44-7.47 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5) ; 7.61 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CH}) ; 7.81-7.88 \mathrm{~m}$, $3 \mathrm{H}\left(\mathrm{H}-4 . \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; 8.17 \mathrm{~d}, 1 \mathrm{H}\left(\mathrm{H}-3,{ }^{3} \mathrm{~J}(3,4)=7.9\right) ; 8.71 \mathrm{~d}, 1 \mathrm{H}\left(\mathrm{H}-6,{ }^{3} \mathrm{~J}(6,5)=4.8\right) ; 8.78 \mathrm{~d}$, $2 \mathrm{H}\left(\mathrm{H}-6^{\prime}, \mathrm{H}-2^{\prime},{ }^{3} J\left(6^{\prime}, 5^{\prime}\right)=5 \cdot 9\right) ; 9 \cdot 60 \mathrm{~s}, 1 \mathrm{H}(\mathrm{OH})$.

Diketone If was obtained from ethyl 4-pyridinecarboxylate ${ }^{11}$ and 3 -acetylpyridine. For yields' melting points and analyses see Table I. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 7.42-7.46 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-5)$; $6.88 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CH}) ; 7.76 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime},{ }^{3} \mathrm{~J}=6.1\right) ; 8.26 \mathrm{td}, 1 \mathrm{H}\left(\mathrm{H}-4,{ }^{3} J(4,5)=8,{ }^{4} \mathrm{~J}(4,2\right.$ and 6) $=1.9) ; 8 \cdot 78-8.81 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}^{-6}, \mathrm{H}-6\right) ; 9.20 \mathrm{~d}, 1 \mathrm{H}\left(\mathrm{H}-2,{ }^{4} \mathrm{~J}=2 \cdot 2\right)$.

3-(2-Pyridinyl)-5-(4-pyridinyl)pyrazole (IIe)

To a hot solution of $I e(1.12 \mathrm{~g}, 5 \mathrm{mmol})$ in methanol (80 ml) was added 30% hydrazine (1.5 ml , $14 \mathrm{mmol})$ and the mixture was refluxed for 8 min . After concentration in vacuo, the separated product was crystallized from aqueous ethanol ($1: 1$), yield $0.8 \mathrm{~g}\left(72 \%\right.$), m.p. $217-219^{\circ} \mathrm{C}$ (reported ${ }^{5}$ m.p. $223-224^{\circ} \mathrm{C}$). For analysis see Table I, for ${ }^{1} \mathrm{H}$ NMR spectrum Table II.

Physical data and analyses of pyrazoles $I I a-I I d, I I f$ and their ${ }^{1} H$ NMR spectra are given in Tables I and II.

1-Phenyl-3-(2-pyridinyl)-5-(4-pyridinyl)pyrazole (IIi)

Freshly distilled phenylhydrazine ($0.55 \mathrm{~g}, 5 \mathrm{mmol}$) and a drop of acetic acid were added to a hot solution of $I e(0.55 \mathrm{~g}, 2.5 \mathrm{mmol})$ in ethanol $(20 \mathrm{ml})$. The reaction mixture was refluxed for 27 h , the solvent evaporated and the oily product chromatographed on a column of silica gel in chloroform; yield $0.13 \mathrm{~g}(17 \%)$ of product, m.p. $117^{\circ} \mathrm{C}$ (cyclohexane). For analysis see Table I, for ${ }^{1} \mathrm{H}$ NMR spectrum Table II. Physical properties, analyses and ${ }^{1} \mathrm{H}$ NMR spectra of compounds IIg and IIh are given in Tables I and II.

3,5-Di-(2-pyridinyl)isoxazole (IIIz)

A solution of hydroxylamine hydrochloride ($1 \mathrm{~g}, 14.4 \mathrm{mmol}$) and anhydrous potassium carbonate $(1 \mathrm{~g})$ in water (10 ml) was boiled to remove the dissolved carbon dioxide and then added to a solution of compound $I a(1 \mathrm{~g}, 4.4 \mathrm{mmol})$ in methanol (80 ml). The reaction mixture was heated to $40^{\circ} \mathrm{C}$ for 3 h , concentrated and the obtained mixture of the product and potassium chloride extracted with diethyl ether. The extract was dried over magnesium sulfate and the solvent evaporated to give an oily residue which crystallized, m.p. 173-174 ${ }^{\circ} \mathrm{C}$ (water); yield 280 mg (28%). The product was homogeneous according to HPLC. For analysis see Table I. ${ }^{1}$ H NMR spectrum (CDCl_{3}): $7.31-7.37 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-5, \mathrm{H}-5^{\prime}\right) ; 7.56 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CH}$ isoxazole); $7.78-7.85 \mathrm{~m}, 2 \mathrm{H}$ ($\mathrm{H}-4, \mathrm{H}-4^{\prime}$) ; $7.94 \mathrm{td}, 1 \mathrm{H}\left(\mathrm{H}-3^{\prime},{ }^{3} J=7 \cdot 9,{ }^{4} J=1.1\right) ; 8.11 \mathrm{td}, 1 \mathrm{H}\left(\mathrm{H}-3,{ }^{3} J=7 \cdot 9,{ }^{4} J=1.1\right)$; $8.71-8.74 \mathrm{~m}, 2 \mathrm{H}$ (H-6, H-6').

Table I

Physical and analytical data of compounds $I-I I I$

Compound Yield, \%	M.p., ${ }^{\circ} \mathrm{C}$ (solvent)	Formula (M.w.)	Calculated/Found		
			\% C	\% H	\% N
Id	111-112	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	69.02	4.46	12.38
93	(water)	(226.2)	68.79	$4 \cdot 58$	$12 \cdot 16$
Ie	132-134	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	69.02	4.46	12.38
59	(water-ethanol)	(226.2)	68.83	$4 \cdot 57$	12.27
If	188-189	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	69.02	$4 \cdot 46$	12.38
84	(water)	(226.2)	$69 \cdot 26$	$4 \cdot 55$	12.33
IIa	190.5-191	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4}$	$70 \cdot 26$	$4 \cdot 54$	25.21
81	(water-ethanol)	(222.3)	69.98	$4 \cdot 74$	$25 \cdot 21$
IIb	$231-232^{\text {a }}$	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4}$	$70 \cdot 26$	4.54	25.21
81	(2-propanol)	(222.3)	$70 \cdot 32$	$4 \cdot 73$	25.25
IIc	$257{ }^{\text {b }}$	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4}$	70.26	$4 \cdot 54$	25.21
90	(water-ethanol)	(222.3)	69.97	$4 \cdot 75$	25.00
IId	173-174	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4}$	$70 \cdot 26$	4.54	25.21
63	(water-ethanol)	(222.3)	$70 \cdot 11$	$4 \cdot 74$	$25 \cdot 22$
IIe	$217-219^{\text {c }}$	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4}$	$70 \cdot 26$	4.54	$25 \cdot 21$
72	(water-ethanol)	(222.3)	$69 \cdot 98$	$4 \cdot 72$	$25 \cdot 17$
IIf	$198{ }^{\text {d }}$	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4}$	$70 \cdot 26$	4.54	$25 \cdot 21$
81	(water-ethanol)	(222.3)	$70 \cdot 32$	$4 \cdot 70$	25.28
IIg	119	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4}$	76.49	$4 \cdot 73$	18.78
40	(sublimed)	(298.4)	$76 \cdot 66$	$4 \cdot 92$	19.05
IIh	131-132	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4}$	76.49	4.73	18.78
24	e	(298.4)	76.77	$5 \cdot 01$	18.83
IIi	117	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4}$	76.49	$4 \cdot 73$	18.78
17	(cyclohexane)	(298.4)	$76 \cdot 66$	$5 \cdot 01$	19.06
IIIa	173-174	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$	69.95	4.06	18.82
28	(water)	(223-2)	69.99	$4 \cdot 27$	$18 \cdot 66$
IIIb	198	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$	69.95	$4 \cdot 06$	18.82
41	(water)	(223.2)	$69 \cdot 66$	$4 \cdot 31$	18.63

[^1]Collect. Czech. Chem. Commun. (Vol. 55) (1990)
Table II

Proton coupling	Compound								
	IIa	IIb	IIC	$I I d^{a}$	$I I e^{a}$	$I I f{ }^{\text {a }}$	$I I g^{a}$	$I I h^{a}$	$I I i^{\text {a }}$
$\begin{gathered} \mathrm{H}-2 \\ { }^{3} J\left({ }^{4} J\right) \end{gathered}$		$9 \cdot 02 \mathrm{~s}$	$\begin{gathered} 8 \cdot 72 \mathrm{dd} \\ 4 \cdot 5(1.6) \end{gathered}$			$\begin{gathered} 9 \cdot 03 \mathrm{~d} \\ (2 \cdot 3) \end{gathered}$			
$\begin{gathered} \mathrm{H}-2^{\prime} \\ { }^{3} J\left({ }^{4} J\right) \end{gathered}$				$\begin{gathered} 9 \cdot 11 \mathrm{~d} \\ (1.5) \end{gathered}$	$8 \cdot 65-8 \cdot 70$	$\begin{array}{r} 8 \cdot 70 \mathrm{dd} \\ 4 \cdot 5(1 \cdot 6) \end{array}$		$\begin{gathered} 8 \cdot 62 \mathrm{~d} \\ (2 \cdot 1) \end{gathered}$	$\begin{array}{r} 8 \cdot 57 \mathrm{dd} \\ 4 \cdot 5(1 \cdot 5) \end{array}$
$\begin{gathered} \mathrm{H}-3 \\ { }^{3} J\left({ }^{4} J\right) \end{gathered}$	7.92 s		$\begin{array}{r} 7 \cdot 44 \mathrm{dd} \\ 4 \cdot 5(1 \cdot 6) \end{array}$	$\begin{aligned} & 7 \cdot 71 \mathrm{~d} \\ & 7 \cdot 9 \end{aligned}$	$\begin{aligned} & 7 \cdot 90 \mathrm{~d} \\ & 7 \cdot 6 \end{aligned}$		$\begin{aligned} & 8 \cdot 11 \mathrm{~d} \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \cdot 11 \mathrm{~d} \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \cdot 9 \end{aligned}$
$\begin{gathered} \mathrm{H}-3^{\prime} \\ { }^{3} J\left({ }^{4} J\right) \end{gathered}$					$7 \cdot 70-7 \cdot 81$	$\begin{array}{r} 7 \cdot 66 \mathrm{dd} \\ 4 \cdot 5(1 \cdot 6) \end{array}$	$7 \cdot 35-7 \cdot 43$		$\begin{array}{r} 7 \cdot 18 \mathrm{dd} \\ 4 \cdot 5(1 \cdot 6) \end{array}$
$\begin{gathered} \mathrm{H}-4 \\ { }^{3} J\left({ }^{4} J\right) \end{gathered}$	$\begin{array}{r} 7 \cdot 78 \mathrm{dt} \\ 7 \cdot 9(1 \cdot 8) \end{array}$	8.03-8.05		$\begin{array}{r} 7 \cdot 79 \mathrm{dt} \\ 7 \cdot 8(1 \cdot 7) \end{array}$	$7 \cdot 70-7 \cdot 81$	$\begin{aligned} & 8.04 \mathrm{td} \\ & 8(1.9) \end{aligned}$	$\begin{aligned} & 7.76 \mathrm{dt} \\ & 8(1.6) \end{aligned}$	$\begin{aligned} & 7.75 \mathrm{dt} \\ & 8(1.4) \end{aligned}$	$\begin{aligned} & 7 \cdot 77 \mathrm{dt} \\ & 8(1 \cdot 6) \end{aligned}$
$\begin{gathered} \mathrm{H}-4^{\prime} \\ { }^{3} J\left({ }^{4} J\right) \end{gathered}$				$\begin{gathered} 8 \cdot 21 \mathrm{td} \\ 7 \cdot 9(1 \cdot 8) \end{gathered}$			$\begin{aligned} & 7 \cdot 66 \mathrm{dt} \\ & 8(1 \cdot 7) \end{aligned}$	$\begin{aligned} & 7 \cdot 53 \mathrm{td} \\ & 8(1 \cdot 8) \end{aligned}$	
$\begin{gathered} \mathrm{H}-5 \\ { }^{3} J\left({ }^{4} J\right) \end{gathered}$	$\begin{gathered} 7 \cdot 26 \mathrm{dt} \\ 4 \cdot 9(1 \cdot 2) \end{gathered}$	$7 \cdot 39-7 \cdot 42$	$\begin{array}{r} 7 \cdot 64 \mathrm{dd} \\ 4 \cdot 5(1 \cdot 6) \end{array}$	$\begin{aligned} & 7 \cdot 28 \mathrm{t} \\ & 5 \cdot 8 \end{aligned}$	7-24-7.28	$7 \cdot 39-7 \cdot 42$	7.21-7. 28	7.22-7.28	$\begin{array}{r} 7 \cdot 28 \mathrm{dt} \\ 6 \cdot 7(1 \cdot 0) \end{array}$
$\begin{gathered} \mathrm{H}-5^{\prime} \\ { }^{3} J\left({ }^{4} J\right) \end{gathered}$				7.35-7.39	$7 \cdot 70-7 \cdot 81$	$\begin{array}{r} 7 \cdot 66 \mathrm{dd} \\ 4 \cdot 5(1.6) \end{array}$	$7 \cdot 21-7 \cdot 28$	$7 \cdot 22-7 \cdot 28$	$\begin{array}{r} 7 \cdot 18 \mathrm{dd} \\ 4 \cdot 5(1 \cdot 6) \end{array}$
$\begin{gathered} \mathrm{H}-6 \\ { }^{3} J\left({ }^{4} J\right) \end{gathered}$	$\begin{gathered} 8 \cdot 67 \mathrm{td} \\ 4 \cdot 9(1 \cdot 3) \end{gathered}$	$\begin{array}{r} 8 \cdot 63 \mathrm{dd} \\ 4 \cdot 8(1 \cdot 7) \end{array}$	$\begin{array}{r} 8 \cdot 72 \mathrm{dd} \\ 4 \cdot 5(1 \cdot 6) \end{array}$	8.66 s	$8 \cdot 65-8 \cdot 70$	$\begin{array}{r} 8 \cdot 64 \mathrm{dd} \\ 4 \cdot 8(1 \cdot 6) \end{array}$	$\begin{aligned} & 8 \cdot 69 \mathrm{~d} \\ & 4 \cdot 2 \end{aligned}$	$\begin{aligned} & 8.67 \mathrm{~d} \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8 \cdot 69 \mathrm{~d} \\ & 4 \cdot 2 \end{aligned}$
$\begin{gathered} H-6^{\prime} \\ { }^{3} J\left({ }^{4} J\right) \end{gathered}$				$\begin{array}{r} 8 \cdot 59 \mathrm{dd} \\ 4 \cdot 8(1 \cdot 6) \end{array}$	$8 \cdot 65-8 \cdot 70$	$\begin{array}{r} 8 \cdot 70 \mathrm{dd} \\ 4 \cdot 5(1 \cdot 6) \end{array}$	$\begin{aligned} & 8 \cdot 57 \mathrm{~d} \\ & 4 \cdot 1 \end{aligned}$	$\begin{array}{r} 8 \cdot 56 \mathrm{dd} \\ 4 \cdot 8(1 \cdot 3) \end{array}$	$\begin{array}{r} 8 \cdot 57 \mathrm{dd} \\ 4 \cdot 5(1.5) \end{array}$
Other signals	$\begin{aligned} & 7.42 \mathrm{~s} \\ & (\mathrm{CH}) ; \\ & 11.08 \mathrm{~s} \\ & (\mathrm{NH}) \end{aligned}$	$\begin{aligned} & 6.95 \mathrm{~s} \\ & (\mathrm{CH}) \end{aligned}$	$\begin{aligned} & 7 \cdot 10 \mathrm{~s} \\ & (\mathrm{CH}) \end{aligned}$	$\begin{aligned} & 7.08 \mathrm{~s} \\ & (\mathrm{CH}) ; \\ & 11 \cdot 85 \mathrm{~s} \\ & (\mathrm{NH}) \end{aligned}$	$\begin{aligned} & 7 \cdot 12 \mathrm{~s} \\ & (\mathrm{CH}) ; \\ & 11 \cdot 50 \mathrm{~s} \\ & (\mathrm{NH}) \end{aligned}$	$\begin{aligned} & 7 \cdot 03 \mathrm{~s} \\ & (\mathrm{CH}) \end{aligned}$	$\begin{aligned} & 7.35-7 \cdot 43 \\ & \left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{5}\right) \end{aligned}$	$\begin{gathered} 7 \cdot 27 \mathrm{~s} \\ (\mathrm{CH}) ; \\ 7 \cdot 34-7 \cdot 37 \\ \left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \end{gathered}$	$\begin{aligned} & \quad 7 \cdot 34 \mathrm{~s} \\ & \\ & (\mathrm{CH}) ; \\ & 7 \cdot 38-7 \cdot 46 \\ & \left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \end{aligned}$

[^2]3,5-Di-(3-pyridinyl)isoxazole (IIIb)
The title compound was prepared from compound $I b$ analogously as described for $I a$; m.p. $198^{\circ} \mathrm{C}$, for analysis see Table I. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right): 6.98 \mathrm{~s}, 1 \mathrm{H}$.(CH isoxazole); 7.41 to $7.47 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-5, \mathrm{H}-5^{\prime}\right) ; 8.15 \mathrm{~d}, 1 \mathrm{H}\left(\mathrm{H}-4^{\prime},{ }^{3} J=8,{ }^{4} J=1.9\right) ; 8.21 \mathrm{td}, 1 \mathrm{H}\left(\mathrm{H}-4,{ }^{3} J=8,{ }^{4} J=\right.$ $=-1.9) ; 8.71-8.74 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-6, \mathrm{H}-6^{\prime}\right) ; 9.09-9.11 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-2, \mathrm{H}-2^{\prime}\right)$.

The elemental analyses (Dr L. Helešic, Head) and the NMR spectra (Dr P. Trška, Head) were obtained in the Laboratories of this Institute.

REFERENCES

1. Laffert J. J., Case F. H.: J. Org. Chem. 32, 1591 (1967).
2. Kuick L. F., Adkins H.: J. Am. Chem. Soc. 57, 143 (1935).
3. Fabbrini L.: Il Farmaco, Ed. Sci. 9, 603 (1954).
4. Ferles M., Kafka S., Šilhánková A., Šputová M.: Collect. Czech. Chem. Commun. 46, 1167 (1981).
5. Samula K.: Rocz. Chem. 47, 1543 (1973).
6. Babska A., Bielski L., Kuczynski L., Respond S., Witek H.: Pol. J. Pharmacol. Pharm. 25, 175 (1973).
7. Fürst H., Jeresaroff I.: Arch. Pharm. 283, 238 (1950).
8. Strong F. M., McElvain S. M.: J. Am. Chem. Soc. 55, 816 (1933).
9. Bruice T. C.: J. Am. Chem. Soc. 79, 702 (1957).
10. Burrus H. O., Powell G.: J. Am. Chem. Soc. 67, 1468 (1945).
11. Camps R.: Arch. Pharm. 240, 345 (1902).
12. Kanth F. W., Neher R.: Experientia 27, 959 (1971).

Translated by M. Tichý.

[^0]: * Part LIX in the series Studies in the Pyridine Series; Part LVIII: Collect. Czech. Chem. Commun. 54, 1687 (1989).

[^1]: ${ }^{a}$ Ref. ${ }^{4}$ gives m.p. $230 \cdot 5-232^{\circ} \mathrm{C}$; ${ }^{b}$ ref. ${ }^{3}$ gives m.p. $247-250^{\circ} \mathrm{C}$; ${ }^{c}$ ref. ${ }^{5}$ gives m.p. $223-224^{\circ} \mathrm{C}$;
 ${ }^{d}$ no m.p. in ref. ${ }^{12} ;{ }^{e}$ column chromatography.

[^2]: ${ }^{a}$ In pyrazoles $I I d-I I i$ the protons $2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}$ and 6^{\prime} belong to the pyridine nucleus of higher locant number.

